Terrestrial aftermath of the Moon-forming impact.

نویسندگان

  • Norman H Sleep
  • Kevin J Zahnle
  • Roxana E Lupu
چکیده

Much of the Earth's mantle was melted in the Moon-forming impact. Gases that were not partially soluble in the melt, such as water and CO2, formed a thick, deep atmosphere surrounding the post-impact Earth. This atmosphere was opaque to thermal radiation, allowing heat to escape to space only at the runaway greenhouse threshold of approximately 100 W m(-2). The duration of this runaway greenhouse stage was limited to approximately 10 Myr by the internal energy and tidal heating, ending with a partially crystalline uppermost mantle and a solid deep mantle. At this point, the crust was able to cool efficiently and solidified at the surface. After the condensation of the water ocean, approximately 100 bar of CO2 remained in the atmosphere, creating a solar-heated greenhouse, while the surface cooled to approximately 500 K. Almost all this CO2 had to be sequestered by subduction into the mantle by 3.8 Ga, when the geological record indicates the presence of life and hence a habitable environment. The deep CO2 sequestration into the mantle could be explained by a rapid subduction of the old oceanic crust, such that the top of the crust would remain cold and retain its CO2. Kinematically, these episodes would be required to have both fast subduction (and hence seafloor spreading) and old crust. Hadean oceanic crust that formed from hot mantle would have been thicker than modern crust, and therefore only old crust underlain by cool mantle lithosphere could subduct. Once subduction started, the basaltic crust would turn into dense eclogite, increasing the rate of subduction. The rapid subduction would stop when the young partially frozen crust from the rapidly spreading ridge entered the subduction zone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terrestrial aftermath of the Moon - forming impact Norman H . Sleep

Much of the Earth’s mantle was melted in the Moon-forming impact. Gases that were not partially soluble in the melt, such as water and CO2, formed a thick, deep atmosphere surrounding the postimpact Earth. This atmosphere was opaque to thermal radiation, allowing heat to escape to space only at the runaway greenhouse threshold of approximately 100 W m−2. The duration of this runaway greenhouse ...

متن کامل

Lunar and terrestrial planet formation in the Grand Tack scenario.

We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distr...

متن کامل

An Alternative Hypothesis for the Formation of the Moon

Introduction: The giant impact hypothesis [1,2] is the cornerstone of current lunar formation research. However, recent analyses of the elemental and isotopic composition of lunar samples show degrees of similarity between Moon and Bulk Silicate Earth (BSE) that are inconsistent with hydrodynamic models of the Moon-forming giant impact showing 60-90% of the Moon is made up of impactor rather th...

متن کامل

Geochemical arguments for an Earth-like Moon-forming impactor.

Geochemical evidence suggests that the material accreted by the Earth did not change in nature during Earth's accretion, presumably because the inner protoplanetary disc had uniform isotopic composition similar to enstatite chondrites, aubrites and ungrouped achondrite NWA 5363/5400. Enstatite meteorites and the Earth were derived from the same nebular reservoir but diverged in their chemical e...

متن کامل

Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact.

Earth and the Moon are shown here to have indistinguishable oxygen isotope ratios, with a difference in Δ'(17)O of -1 ± 5 parts per million (2 standard error). On the basis of these data and our new planet formation simulations that include a realistic model for primordial oxygen isotopic reservoirs, our results favor vigorous mixing during the giant impact and therefore a high-energy, high-ang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 372 2024  شماره 

صفحات  -

تاریخ انتشار 2014